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Abstract 
There is probably no thermal engineer who has not yet 

developed his or her own spreadsheet to calculate the thermal 
resistance of a layered structure such as the chip / die-attach / 
lead-frame stack in a power semiconductor. The more 
sophisticated versions of such spreadsheets consider also the 
effect of heat-spreading inside the layers, usually assuming a 
constant spreading angle which is often chosen to be 45°.  As 
simple as this approach is as poor are often the results 
compared to Finite Element simulations or measurements. 
Herein we propose a definition of the effective heat-spreading 
angle which is based on the local variation of the heat-flux 
density along the heat-flow path. Using this definition it is 
possible to accurately calculate the heat-spreading angle inside 
a given structure and thus to develop more accurate heat 
spreading models e.g. for spreadsheet calculations.  
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1. Introduction 
One of the most often used formulas in thermal 

engineering is probably the equation  
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for the thermal resistance Rth of a layer with thickness x, 
cross-sectional area A and thermal conductivity k. Assuming 
that the heat flow path inside a layered structure can be 
modeled by a series of truncated cones as shown in figure 1, 
thus taking into account the heat spreading, the total thermal 
resistance across this structure could be approximated using   
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xi, Ai, ki being thickness, cross-section, thermal conductivity, 
and specific heat of the i-th slice. In the following we will 
refer to this model by “truncated cone model” (TCM). Many 
spreadsheet calculations are based on it. However there are 
several problems with this approach: 

1. The model assumes that the heat is spread homogeneously 
over the area Ai of each slice which is not true. 

2. The model implicitly assumes that the temperature on all 
interfaces between any two slices is isotherm, i.e. that all 
isothermals are planar and parallel. Otherwise we would 
not be allowed to apply eq. (1) to calculate the partial 
resistance of each slice. Isothermal faces on both sides of a 
layer are in fact an (often forgotten about) pre-condition 

for the applicability of (1). But as any thermal engineer 
knows the isothermals in real structures are neither planar 
nor isothermal (figure 2). 

3. The model assumes that the heat spreading angle  is 
constant within each layer which is not true either as we 
will show below. 

4. The model assumes that the heat spreading is independent 
from the external boundary conditions. As discussed in [1] 
and [2] and will be shown again below this is not the case 
either. 

Therefore the results obtained using the truncated cone 
model and eq. (2) often deviate considerably from FE 
simulation results or measured Rth values and should be used 
with care. Additionally the heat-spreading angle  within each 
layer is unknown. A value of 45° is often used but mostly 
based on our intuitive imagination of the heat spreading in a 
material with isotropic thermal conductivity; though some 
authors have investigated the applicability of the 45° heat 
spreading angle [3, 4]. 

In this paper we propose the definition of an effective heat 
spreading angle effwhich is based on the local variation of 
the heat-flux density p(x) [W/mm2] along the heat flow path. 
In combination with the truncated cone heat spreading model 
(TCM) as in figure 1 the use of the thus defined heat-
spreading angle accurately reproduces the correct Rth of the 
structure.  

 
Figure 1: Simple heat spreading (“truncated cone”) model for 
the calculation of the thermal resistance of a layered structure. 

 
Figure 2: Non-planar isothermals in a real semi-conductor 
device. 
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2. Effective heat spreading angle 
The concept of the effective heat spreading angle is quite 

simple. Instead of considering the heat flux distribution in the 
whole structure we focus on the local heat flux density p(x) 
along the heat flow path and ask which heat spreading angle 
would result in the observed functional dependency p(x) in a 
truncated cone model if assumptions 1+2 were true. In the 
following we consider the path  between the point of 
maximum temperature Tj on a semiconductor chip and the 
point of maximum case temperature Tc on the bottom side of 
the structure (figure 3). The heat source is located at x  0 and 
the case surface at x  xcase. 

A Finite Element simulation with sufficiently fine spatial 
resolution along the x-axis reveals the decrease of p(x) along 
this path (figure 4). All parameters for that simulation are 
shown in table 1. The heat flux density decreases quickly 
throughout the silicon chip, it remains almost constant in the 
region of the glue die attach, and it slowly decreases further in 
the leadframe until it abruptly drops to zero at the case surface 
where a fixed temperature boundary condition was applied. 
Only an area A0 = 1.01.0 mm2 in the center of the 3.03.0 
mm2 chip surface was heated. The drop in heat flux density 
p(x) is caused by heat spreading; therefore it seems reasonable 
to calculate the spreading angle based on p(x) or the derivative 
dp/dx thereof.  
 

 
Figure 3: Path  along which the heat flux density p(x) is 
monitored. 
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Figure 4: Heat flux density p(x) along the path between 
junction and the case monitor point. 
 

Layer Material Size  
[mmmmmm]  

Thermal 
cond. [W/mK] 

Chip Silicon 3.0  3.0  0.38 148 

Die attach Glue 3.0  3.0  0.03 1.5 

Leadframe Cu alloy 6.0  6.0  0.25 350 

Table 1: FE simulation model parameter: A power of 10W 
was dissipated homogenously on an active area A0 = 1.0  
1.0mm2 on the surface of the chip, i.e. the initial heat flux 
density p0 is 10 W/mm2. At case a fixed temperature boundary 
condition is applied. 

In the following we shall assume that the heat is always 
spread homogeneously over the whole area as in assumption 
(1) of the simple cone heat spreading model from figure 1. I.e. 
at depth x the heat is spread homogeneously over an effective 
area A(x) which is given by  
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For a square area A(x) its side length is 
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Plotting y(x) = ½ a(x) versus x we obtain the (upper half of the) 
heat spreading profile as shown in figure 5. The inclination of 
the tangent to that profile with respect to the horizontal is the 
effective heat spreading angle eff at that point. It shall be 
emphasized again that the real heat spreading profile and 
angle will deviate somewhat from that in figure 5 because of  
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Figure 5: Effective heat spreading profile calculated for the 
heat flux density p(x) from figure 4. 
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of the underlying assumptions (1) + (2) which are not met in 
reality. Therefore we call them effective heat spreading angle 
and effective heat spreading profile. But based on this profile 
we can construct a truncated cone heat spreading model which 
will exactly reproduce the true Rth of the layer structure 
because it correctly reproduces the heat flux density along the 
path between Tj and Tc. The temperature difference between 
start and end point of the heat flow path  is unambiguously 
defined by the heat flux density along that path: 
 
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3. Calculation of the effective heat spreading angle 
If the heat flux is spread from an area A(x) with 

circumference L(x) to an area A(x + dx) the area increases by 

 dRxLdA )(  (6) 

where dR = dx tan(eff) (see figure 6). Taking the derivative of 
eq. (3) we obtain  
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and from eq. (6) we know that 
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Therefore we obtain 
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or, using again eq. (3), 
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for the effective spreading angle eff at position x. This 
expression can be further evaluated for different shapes of the 
active area as shown in table 2 to obtain eff solely as function 
of p(x) and the derivative dp/dx thereof. In this concept the 
effective heat spreading angle seems to be a local quantity 
because it is derived solely from the local heat flux density. 
But p(x) implicitly depends on the geometry, the material 
properties, and the boundary conditions of the whole structure 
and the effective heat spreading angle therefore reflects all 
these influencing factors. 

 
 

 

 

 
 
Figure 6: Heat spreading from area A(x) to area A(x + dx). 
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Table 2: Formulas for the effective heat spreading angle for 
different shapes of the active area. 

Figure 7 shows the resulting heat spreading angle eff(x) for 
our example. Within the silicon chip the heat spreading angle 
increases from about 30° to 80°, contrary to the 45° spreading 
models. Within the glue die attach the heat spreading angle 
drops almost to zero. Within the leadframe the heat is initially 
spread with an angle of 22° which narrows down until the 
spreading angle becomes zero at the case side with fixed 
temperature boundary conditions. We will see in the next 
section that the heat spreading profile looks very different if 
we apply more realistic cooling conditions at the case side. 

We see in the equations in table 2 that the effective heat 
spreading angle depends not only on the heat flux density p(x) 
and its derivative but also on the dimension a0 or r0 of the 
active area: At first sight eff seems to increase with the size of 
the active area which would be wrong since we can expect that 
the heat spreading originating from a larger area is lower. For 
an infinitely large planar heat source the spreading angle is in 
fact zero (one-directional heat-flow).  
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Figure 7: Effective heat spreading angle calculated for the 
heat flux density p(x) from figure 4. 
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But if we keep the total power dissipation P constant, p(x) 
does also decrease when a0 or r0 are increased, thus explaining 
the seemingly contradiction. 

4. Influence of boundary conditions and device geometry 
In this section we apply the concept of the effective heat 

spreading angle to visualize the influence of boundary 
conditions, material properties, and device geometry on the 
internal heat spreading of a power semiconductor device. For 
this purpose we consider again the three layer structure 
consisting of chip, die attach, and leadframe, as described in 
table 1. 

4.1 Influence of the cooling condition at package case 
First we want to demonstrate the influence of the external 

cooling condition. Figure 9 shows the effective heat spreading 
profile and angle inside the structure when different heat 
transfer coefficients are applied to its bottom (case) surface, 
namely: 5.0×103, 1.0×104, 5.0×104, 1.0×105W/(m2K), and 
fixed case temperature, the latter corresponding to an 
infinitely high heat transfer coefficient. For comparison: data-
sheet values for heat transfer coefficients of liquid cooled 
cold-plates range in between 5000 and 20000 W/(m2K), 
whereas with liquid jet impingement values as high as 5.0×104 
– 2.5×105 W/(m2K) can be achieved [5]. While the cooling 
condition has almost no influence on the heat spreading inside 
silicon die and die attach we see a big impact of the boundary 
condition on the heat spreading inside the leadframe. The 
higher the heat transfer coefficient at the case surface the less 
the heat is spread inside the leadframe. For the fixed case 
temperature boundary condition finally, which can only be 
realized in simulations but is nevertheless often used to 
calculate the junction to case thermal resistance Rth-JC, the 
heat spreading behavior is fundamentally different: While for 
finite values of the heat transfer coefficient the spreading 
angle increases throughout the leadframe it is much lower for 
the fixed case temperature condition and even drops to zero at 
the case surface. These results underline once more the fact 
that heat spreading and consequently also the Rth-JC of a 
power semiconductor are influenced by the external boundary 
conditions (see also [2]). 

4.2 Influence of die attach material properties 
In the next step we investigate the influence of the die 

attach material, comparing thermally high conductive solder 
die attach (k = 53W/(mK)) to thermally low conductive glue 
die attach (k = 1.5W/(mK)). Again we use the structure from 
table 1 but increase for solder the thickness of the die attach 
from 30µm for glue to 50µm for solder. Figure 10 shows the 
resulting effective heat spreading profile and angle for glue 
(blue) and solder (red). We can see that the die attach has a 
big influence on the heat spreading inside the silicon chip. For 
glue die attach the heat is spread out much more inside the die 
than it is for solder die attach. A heat barrier, as represented 
by the thermally low conductive glue obviously causes the 
heat to spread out more in the preceding layer(s). If the Rth-JC 
is to be computed based on a truncated cone model (TCM) it 
is crucial to model the spreading inside the silicon chip 
correctly, especially so for thermally low conductive glue.  
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Figure 9: Effective heat spreading profile (a) and spreading 
angle (b) for different cooling conditions (heat transfer 
coefficients) at the case surface. 

This is because the heat spreading inside the chip determines 
the cross sectional area of the heat flow through the die attach 
and therefore its thermal resistance. Despite its small thickness 
the die-attach often contributes a major part to the total 
thermal resistance of the device, since it is normally the 
material with the lowest thermal conductivity. 

Not surprisingly the heat spreading inside the die attach is 
higher for solder than for glue due to its higher thermal 
conductivity. Inside the glue layer the spreading angle is close 
to zero. On the other hand the die attach has little influence on 
the heat spreading angle inside the leadframe which is only 
slightly larger for glue than for solder die attach (figure 10b). 
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Figure 10: Effective heat spreading profile (a) and spreading 
angle (b) for glue and solder die attach. A heat transfer 
coefficient of 1.0×104 W/(m2K) was applied at the case 
surface. 

4.3 Influence of the size of active area 
Finally we demonstrate the impact of the size of the active 

area on the chip over which the power is dissipated. For that 
purpose we increase the size of the active area on the 3.0 x 3.0 
mm2 chip of our test structure from 1.0 x 1.0 mm2 to 2.0 x 2.0 
mm2 and 3.0 x 3.0 mm2. 

Figure 11 compares the resulting effective heat spreading 
profiles and spreading angles, revealing that the size of the 
active area has a major impact on the heat spreading. We 
observe that the heat spreading angle inside the chip decreases 
with increasing size of the active area.  
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Figure 11: Effective heat spreading profile (a) and spreading 
angle (b) for different sizes of the active area. A heat transfer 
coefficient of 1.0×104 W/(m2K) was applied at the case 
surface. 

Once the active area becomes equal to the chip size the 
heat spreading angle inside the chip drops to small values 
however not to zero which may be surprising at first. The 
subsequent leadframe which is larger than the chip provides 
plenty of room for lateral heat spreading which causes the heat 
flux lines to bend already inside the chip. This effect can also 
be observed in figure 2 where we see non-planar isothermals 
already in the chip, even so the whole surface of the die was 
heated homogeneously. 

The heat spreading angle inside the copper leadframe on 
the other hand is not influenced by the size of the active area. 
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5.  A practical example 
In order to demonstrate the applicability of the effective 

heat spreading concept we use the method to calculate Rth-JC 
values for four power packages with exposed die pads of 
different leadframe thickness (figure 12). The Rth-JC of the 
same packages had previously been determined in a Finite 
Element simulation study using the detailed models shown in 
figure 12. Therefore accurate Rth-JC values are available for 
comparison. In the FE simulations a fixed case temperature 
boundary condition had been applied to determine Rth-JC. 

To gain insight into the dependence of the heat spreading 
inside the leadframe on its thickness we performed a few 
simulations with our test structure (table 1) for different values 
of the leadframe thickness and with fixed case temperature, 
the results of which are shown in figure 13. We see that the 
heat spreading angle inside the leadframe starts at values from 
25° to 45°, depending on its thickness, and that it decreases to 
zero towards the case surface due to the ideal cooling 
boundary condition.  

Since we do not want to treat each leadframe thickness 
separately we decided to approximate this behavior by a heat 
spreading angle which starts at an average value of 35° and 
decreases linearly to zero towards the case surface. Further-
more we neglect the small amount of heat spreading inside 
chip and die attach, assuming zero heat spreading in that 
region. The resulting truncated cone model with a 4-slice 
discretization of the leadframe can be seen in figure 14. We 
implemented this TCM in a spreadsheet calculator as follows: 
The bottom side length ai of the i-th slice of the leadframe 
heat spreading cone with square cross section and thickness di 
is  

11 tan   iiii daa  ,  00 Aa   (11) 
To compute the thermal resistance Rth,i of each slice we use 

the area of the center plane 
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Figure 12: FE models of 4 power packages with exposed die-
pad of different thickness. 
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Figure 13: Effective heat spreading profile (a) and spreading 
angle (b) for the structure from table 1, but solder die attach 
and varying leadframe thickness. A fixed case temperature 
boundary condition was applied at package case. 

 

 
Figure 14: Truncated cone model used to calculate Rth-JC. 
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Since we do not assume heat spreading inside chip and die 
attach the corresponding layers need not to be subdivided. The 
Rth-JC values obtained by summation over the Rth,i values of 
all slices of this model are listed in column (b) in table 3. For 
comparison we have also computed the Rth-JC values with the 
same TCM assuming a constant 45° heat spreading angle 
inside the leadframe in column (c). With respect to the Finite 
Element results in column (a) the error of effective heat 
spreading model is much smaller than that of the 45° heat 
spreading model which overestimates the spreading angle. 

The thus validated spreadsheet could now be used to 
quickly calculate the Rth-JC for a wide range of different 
power packages with exposed die pad. However we have to 
keep in mind the assumptions for which the underlying heat 
spreading model has been derived; e.g. in this case we 
assumed ideal cooling and no heat spreading inside the die. 
For other cooling conditions or devices with a small active 
area on a larger die we would have to adapt the heat spreading 
model in our spreadsheet. 

6.  Conclusion 
We propose the definition of an effective heat spreading 

angle eff which is based on the local heat flux density p(x) 
along a heat flow path. Based on this heat spreading angle and 
the associated heat spreading profile it is in principle possible 
to calculate the exact value of the temperature difference 
between start and end point of the path using a truncated cone 
heat spreading model (TCM). 

 For a single specific case there would be little motivation 
to do so since the calculation of p(x) itself requires a Finite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element simulation which could as well be used to directly 
calculate the temperature difference. But as demonstrated in 
the previous example it is often possible to derive a heat 
spreading model for a wide enough range of applications to 
make it worth the effort. We hope that the results presented 
herein can help to solve the mystery of the “correct” heat 
spreading angle in numerous spread sheet calculators, 
hopefully resulting in more accurate estimates of Rth-JC and 
other thermal resistances.  
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Package LF Thickness Chip size 

(a) Rth-JC  
FEM 
simulation 

(b) Rth-JC 
Effective heat 
spread. model Error 

(c) Rth-JC 
spreading 
angle 45° Error 

D2PAK 1.27 1 1.802 1.942 7.77% 1.477 -18.04% 
  1.27 2 1.116 1.139 2.06% 0.880 -21.15% 
  1.27 4.5 0.620 0.592 -4.52% 0.472 -23.87% 
  1.27 10 0.333 0.301 -9.61% 0.249 -25.23% 
DPAK 0.9 1 1.717 1.757 2.33% 1.390 -19.04% 
  0.9 2 1.033 0.996 -3.58% 0.805 -22.07% 
  0.9 4.5 0.548 0.499 -8.94% 0.417 -23.91% 
  0.9 10 0.280 0.246 -12.14% 0.213 -23.93% 
TOLL 0.5 1 1.457 1.411 -3.16% 1.201 -17.57% 
  0.5 2 0.835 0.761 -8.86% 0.663 -20.60% 
  0.5 4.5 0.405 0.362 -10.62% 0.325 -19.75% 
  0.5 10 0.189 0.171 -9.52% 0.158 -16.40% 
SSO8 0.25 1 1.154 1.055 -8.58% 0.968 -16.12% 
  0.25 2 0.597 0.547 -8.38% 0.510 -14.57% 
  0.25 4.5 0.268 0.251 -6.34% 0.238 -11.19% 
  0.25 10 0.121 0.115 -4.96% 0.111 -8.26% 

Table 3: Comparison of the Rth-JC values computed using (a) detailed finite element models, (b) the effective heat 
spreading model, and (c) the 45° heat spreading model. 


